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By K E K E Z H A N G1, P A U L E A R N S H A W1,
X I N H A O L I A O2 AND F. H. B U S S E3

1School of Mathematical Sciences, University of Exeter, EX4 4QE, UK
2Shanghai Observatory, Shanghai 200030, China

3Institute of Physics, University of Bayreuth, D-95440 Bayreuth, Germany

(Received 15 May 2000 and in revised form 16 October 2000)

Several new results are obtained for the classical problem of inertial waves in a
rotating fluid sphere which was formulated by Poincaré more than a century ago.
Explicit general analytical expressions for solutions of the problem are found in a
rotating sphere for the first time. It is also discovered that there exists a special class of
three-dimensional inertial waves that are nearly geostrophic and always travel slowly
in the prograde direction. On the basis of the explicit general expression we are able to
show that the internal viscous dissipation of all the inertial waves vanishes identically
for a rotating fluid sphere. The result contrasts with the finite values obtained for
the internal viscous dissipation for all other cases in which inertial waves have been
studied.

1. Introduction
In rotating fluid systems with small viscosity and large rotation rates, fluid motions

in the form of slowly decaying oscillations are found which are usually referred
to as inertial waves or inertial oscillations (Greenspan 1968). Inertial waves can be
sustained in different ways. Aldridge & Toomre (1969) used external time-dependent
disturbances to excite axisymmetric spherical inertial oscillations in an experimental
study of the problem for a sphere. Inertial waves are likely to be generated in the
Earth’s fluid outer core (Aldridge & Lumb 1987; Hide 1966). A subclass of the inertial
waves in a rotating sphere which are nearly independent of the coordinate parallel
to the axis of rotation can be excited and maintained by thermal convection when
the Prandtl number of the fluid is sufficiently small (Zhang & Busse 1987; Zhang
1994, 1995; Ardes, Busse & Wicht 1996). In the context of magnetohydrodynamics,
magnetically modified inertial waves can be obtained in the presence of an externally
imposed magnetic field (Malkus 1967, 1968; Roberts & Loper 1979; Kerswell 1994;
Zhang & Busse 1995).

There are usually two different sources of viscous dissipation in connection with
the inertial waves in rotating systems. When a no-slip boundary condition is used,
viscous dissipation occurs in the interior of the fluid, as well as in the Ekman
boundary layer, with the latter being dominant (see, for example, Greenspan 1968).
When the stress-free boundary condition is used, at most a weak Ekman boundary
layer is realized and the internal viscous dissipation primarily determines in which
way inertial waves can be excited and maintained in rotating fluid systems. For
example, the Ekman boundary layers are not present in a rotating plane layer when
the stress-free conditions are used (Zhang & Roberts 1997); it is solely the internal
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viscous dissipation associated with the three-dimensional integral∫
V

u∗ · ∇2u dV = 〈u∗ · ∇2u〉 (1.1)

that plays a key role in determining the properties of convection-driven inertial
waves. Here u is the velocity of a three-dimensional inertial wave, u∗ is its complex
conjugate and V denotes the volume of the fluid domain. We shall refer to (1.1)
as the dissipation integral in this paper. In simple geometries such as a fluid layer
(Zhang & Roberts 1997), it is straightforward to show that the dissipation integral is
always non-zero and negative. In Appendix A, we show that the dissipation integral
of an inertial wave in a rotating annulus, which has curvature and is widely used to
mimic spherical geometry, is always negative. This is consistent with the anticipation
that there is always finite viscous dissipation of the wave in the interior of the fluid.
It is discovered, however, that the dissipation integral (1.1) vanishes identically in a
rotating fluid sphere. In order to demonstrate that this peculiar feature is true for all
inertial waves, we have obtained explicit general analytical expressions that describe
all three-dimensional inertial waves in a rotating fluid sphere. We are thus able to
show that the internal viscous dissipation for all inertial waves in a fluid sphere does
indeed vanish.

In what follows we present a brief mathematical formulation and the relevant
previous results in § 2. In § 3 we shall discuss a particular example of an inertial wave
in a rotating fluid sphere for the purpose of illustration. In §§ 4 and 5 we study the
general problem, with some concluding remarks given in § 6.

2. The inertial wave problem in a sphere
The problem of inertial waves and oscillation which describes the motion of an

inviscid fluid in a rotating fluid sphere is a classical one. More than a century ago
Poincaré derived the basic governing equation and Bryan obtained the general implicit
solution in modified oblate spheroidal coordinates (Bryan 1889; Lyttleton 1953). A
detailed account of earlier research results on this problem can be found in Greenspan
(1968).

Consider a homogeneous fluid sphere of small viscosity ν that is rotating uniformly
with a constant angular velocity Ω. It is convenient to take the radius of the sphere, ro,
as a characteristic length, and Ω−1 as a characteristic scale of time. The dimensionless
linearized equations of motion and continuity are

∂u

∂t
+ 2k × u = −∇P + [E∇2u− f], (2.1a)

∇ · u = 0, (2.1b)

where k is the unit vector parallel to the axis of rotation and the Ekman number E
is defined as

E =
ν

Ωr2
o

,

and is assumed to be a small parameter; f represents a small external force required
to sustain the wave motion against the weak viscous dissipation.

When E is sufficiently small, the fluid motions can be described in leading order as
inertial waves for which the terms [E∇2u − f] can be dropped from equation (2.1a).
Neglecting the effect of an Ekman boundary layer, we can solve the problem defined
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by equations (2.1a, b) through the perturbation ansatz

u = u0 + Eu1 + . . . , P = P0 + EP1 + . . . , f = Ef0 + . . . . (2.2a, b, c)

The leading-order problem describing inertial waves is given by

∂u0

∂t
+ 2k × u0 = −∇P0, ∇ · u0 = 0 (2.3a, b)

with the boundary condition

r · u0 = 0 (2.4)

on the surface of the fluid sphere. The details of the higher-order problem, which
depends on the way in which the flow is driven or excited, do not concern us in this
paper. Of importance, however, is the dissipation integral which is usually associated
with the solvability condition

Re[〈u∗0 · f0〉] = Re[〈u∗0 · ∇2u0〉], (2.5)

where 〈 〉 denotes a three-dimensional integration over the entire sphere.
To determine the solution u0, we eliminate the pressure P0 and rewrite equations

(2.3a, b) in terms of the three velocity components in cylindrical coordinates (s, φ, z).
Let

u0 = [Us(s, z), Uφ(s, z), Uz(s, z)] ei(mφ+2σt). (2.6)

The vector equations (2.3a, b) can then be written as the three scalar equations

s
∂Us

∂z
+ iσs

∂Uφ

∂z
+ mσUz = 0, (2.7a)

∂(sUs)

∂s
+ iσ

∂(sUφ)

∂s
+ m(iUφ + σUs) = 0, (2.7b)

∂(sUs)

∂s
+ imUφ + s

∂Uz

∂z
= 0, (2.7c)

with the boundary condition

sUs + zUz = 0 at s2 + z2 = 1, (2.8)

where m is the azimuthal wavenumber of the inertial wave.
Two different classes of solutions of equations (2.7a–c) can be distinguished: equa-

torially symmetric waves are characterized by the symmetry property

(Uφ,Us, Uz)(z) = (Uφ,Us,−Uz)(−z); (2.9a)

while equatorially antisymmetric waves obey the symmetry

(Uφ,Us, Uz)(z) = (−Uφ,−Us,Uz)(−z). (2.9b)

The mathematical expressions and analysis for both the parities are identical except
for shifting some indexes by 1. In order to discuss and express the already complex
mathematical problem with many indexes more clearly, we shall mainly focus on the
equatorially symmetric waves (2.9a). The analysis for the equatorially antisymmetric
waves (2.9b) is exactly parallel and will not provide any additional insight into the
problem.

Implicit solutions for (2.7a–c) were first derived more than a century ago. The
brief discussion below follows that given by Bryan (1889). Introducing the modified
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spheroidal coordinates X and Y

X =

√
2(1− σ2)1/2

2

[√
d2 − 4σ2z2

(1− σ2)2
− d
]1/2

, (2.10a)

Y =

√
2σz

(1− σ2)1/2

[√
d2 − 4σ2z2

(1− σ2)2
− d
]−1/2

, (2.10b)

with

d = s2 − (1 + σ2z2)

(1− σ2)
,

we can express the velocity of the inertial wave in a rotating sphere compactly as

Uz = i
(1− σ2)

σ

(
dΦ(X)

dX
Φ(Y )Xz +

dΦ(Y )

dY
Φ(X)Yz

)
, (2.11a)

Us = − i

s

(
mΦ(X)Φ(Y ) +

dΦ(X)

dX
Φ(Y )σsXs +

dΦ(Y )

dY
Φ(X)σsYs

)
, (2.11b)

Uφ =
1

s

(
mσΦ(X)Φ(Y ) +

dΦ(X)

dX
Φ(Y )sXs +

dΦ(Y )

dY
Φ(X)sYs

)
, (2.11c)

where Φ(x) denotes an associated Legendre function of order m and

Xs = −sX(1− σ2)

X2 − Y 2
, Ys =

sY (1− σ2)

X2 − Y 2
,

Xz = −Y (1−X2)σ

X2 − Y 2
, Yz =

X(1− Y 2)σ

X2 − Y 2
.

Upon realizing that the complex transformation (2.10a, b) causes difficulties in the
derivation of explicit solutions, Kudlick (1966) (see Greenspan 1968) obtained an
improved implicit solution of the inertial waves in the form of a summation of
polynomials:

Uz = i
(1− σ2)

σ

∂FN(s, z)

∂z
, (2.12a)

Us = −i

(
σ
∂FN(s, z)

∂s
+
mFN(s, z)

s

)
, (2.12b)

Uφ =
∂FN(s, z)

∂s
+
mσFN(s, z)

s
, (2.12c)

where FN is a double polynomial given by

FN(s, z) = sm
N∏
k=1

(aks
2 + bkz

2 + ck) (2.13)

with

ak = (1− σ2)xk, bk = σ2(1− xk), ck = xk(xk − 1),
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where xk, k = 1, 2, . . . N, are the N roots of the equation

N∑
j=0

(−1)j
[2(2N + m− j)]!

j![2(N − j)]!(2N + m− j)! x
N−j
k = 0. (2.14)

The half-frequency, σ, of an equatorially symmetric inertial wave (2.9a), corresponds
to a root of the equation

WNm(σNmn) =

N∑
j=0

(−1)j

× [2(2N + m− j)]!
j!(2N + m− j)![2(N − j)]!

[
(m+ 2N − 2j)− 2(N − j)

σNmn

]
σ

2(N−j)
Nmn = 0, (2.15)

while σ for an equatorially antisymmetric inertial wave (2.9b) is given by

WNm(σNmn) =

N∑
j=0

(−1)j
[2(2N + m+ 1− j)]!

j!(2N + m+ 1− j)![2(N − j) + 1]!

×
[
(m+ 2N − 2j + 1)− 2(N − j) + 1

σNmn

]
σ

2(N−j)+1
Nmn = 0. (2.16)

Accordingly, we can use the following procedure to calculate an explicit solution for
the inertial wave: (i) solve the equation (2.14) to obtain the N roots, xk, k = 1, 2 . . . N;
(ii) use (2.13) to find the double polynomial FN(s, z), and (iii) obtain an explicit
expression for the wave velocity by using (2.12). When N is small, the explicit
solution can be readily derived by this procedure. N = 0, 1 has been discussed
in various contexts (for example, Malkus 1967, 1968; Zhang 1993). When N > 4,
however, xk, k = 1, 2 . . . N cannot be written as an analytical expression and, hence, the
coefficients of the polynomial FN(s, z) cannot be expressed explicitly. In consequence
a general explicit solution cannot be obtained by this procedure for N > 4 based on
equations (2.12)–(2.14).

3. An example: symmetric waves with N = 2

Before discussing the general solution for the inertial wave in a rotating sphere
and showing that the internal viscous dissipation of all the inertial waves vanishes
identically in a sphere, it is profitable to illustrate this unique and salient characteristic
by examining a simple subclass N = 2, which can be readily derived from equations
(2.12)–(2.14). We first obtain the two roots from quadratic equation (2.14) at N = 2:

x1 =
1

(2m+ 7)

[
3 +

(
12(m+ 2)

(2m+ 5)

)1/2
]
, x2 =

1

(2m+ 7)

[
3−

(
12(m+ 2)

(2m+ 5)

)1/2
]
,

(3.1a, b)

which are then substituted into equation (2.13) to yield

F2(s, z) = sm[C1z
4 + C2s

4 + C3z
2 + C4s

2 + C5s
2z2 + C6] (3.2)

where expressions for CJ, j = 1, . . . , 6, which are a function of the wavenumber m
and half-frequency σ, are given in Appendix B. Using equation (2.12), we obtain an
explicit expression for the velocity of the inertial wave of the subclass N = 2 for a
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(a)

(b)

(c)

(d )

Figure 1. Contours of Uφ (on the left) and of the corresponding Us (on the right) are displayed
in a meridional plane (z > 0) for N = 2 with m = 8. The part for z < 0 is not shown because of
symmetry (2.9a). There are four possible waves for the subclass: (a) ω = −0.8107, (b) ω = −0.1450,
(c) ω = 0.5037 and (d) ω = 1.1187, where ω is the frequency of the wave and ω = 2σ. The solid
lines represent flow in the eastward direction for Uφ (away from the axis of rotation for Us), while
the dashed lines denote the westward direction.

given σ,

Uz = i
4(1− σ2)

σ
[Cz

1z
3 + Cz

2zs
2 + Cz

3z]s
m, (3.3a)

Us = −i[Cs
1z

4 + Cs
2s

4 + Cs
3z

2 + Cs
4s

2 + Cs
5s

2z2 + Cs
6]s

m−1, (3.3b)

Uφ = [Cφ
1 z

4 + C
φ
2 s

4 + C
φ
3 z

2 + C
φ
4 s

2 + C
φ
5 s

2z2 + C
φ
6 ]sm−1. (3.3c)

The coefficients in the above expressions are given in Appendix B.
Typically, for m = 1 the fluid motions are non-zero on the axis of rotation while

they vanish there whenever m > 1. To display this characteristic difference and also
to show the effect of the size of the wavenumber, we present two typical profiles of
the waves, m = 8 in figure 1 and m = 1 in figure 2. For each wavenumber m, there
are always four different inertial waves corresponding to the four values of σ for
N = 2 (see Appendix B). As must be expected the nearly geostrophic waves shown in
figures 1(a) and 2(b) are associated with the smallest |σ| in this subclass. To show the
possible effect of an inner sphere, we plot its position (the dotted line) with radius
0.35ro in figures 1 and 2.

It is convenient to represent, as we have already done in § 2, a three-dimensional
wave by employing the triple index notation, for example σNmn or uNmn, in which the
wavenumber m always indicates the azimuthal scale of an inertial wave, N represents
the degree of the possible complexity in the axial direction and n is related to the
radial structure. While the wavenumber m can be any integer, N and n are related:
the maximum value of n is determined by N in that n = 1, 2, . . . , 2N for symmetric
modes.

Using (3.3), it is straightforward, but rather tedious, to show for the subclass N = 2
that ∫

V

u∗2mn · ∇2u2mn dV ≡ 0 (3.4)
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(a)

(b)

(c)

(d )

Figure 2. As figure 1 but with m = 1. Four possible waves for the subclass are: (a) ω = −1.1834,
(b) ω = −0.0682, (c) ω = 1.0456 and (d) ω = 1.8060.

for any m or n and σ, whether σ satisfies or does not satisfy the eigenvalue equation
(B1) given in Appendix B. This unexpected property was first noticed by Zhang
(1994) for the subclass N = 1. But it was thought that it was a consequence of the
particularly simple spatial structure for that subclass.

We have carried out the analysis for two more subclasses, N = 3 and N = 4, which
have much more complex spatial structures, and the same property

〈u∗3mn · ∇2u3mn〉 = 〈u∗4mn · ∇2u4mn〉 ≡ 0, (3.5)

was found, indicating the possibility that it holds for all inertial waves in a sphere.

4. The new explicit solution
In order to show that equation (3.5) does indeed hold for all inertial waves in

a sphere for N > 4, it is essential that explicit general expressions are obtained in
order to extend the results (3.5) to N > 4. The process of derivation of the general
solutions for (2.7) and (2.8) is very lengthy and cumbersome, and we only give a brief
outline here. Substituting expressions (2.10a, b) and expressions for Xs,Xz, Ys, Yz into
equations (2.11a–c) and making an appropriate reorganization, all the terms can be
written in forms such as

X2Y 2, X2 + Y 2, X4 + Y 4, X2Y 4 +X4Y 2, X6 + Y 6.

They can be transformed into polynomials in terms of s, z and σ:

X2Y 2 = σ2z2, X2 + Y 2 = 1− (1− σ2)s2 + σ2z2,

X4 + Y 4 = 1− 2(1− σ2)s2 − 2(1− σ2)σ2s2z2 + (1− σ2)2s4 + σ4z4,

X4Y 2 + Y 4X2 = σ2z2 − 2σ2(1− σ2)s2z2 − 2(1− σ2)σ4s2z4 + σ2(1− σ2)2s4z2 + σ6z6,

X6 + Y 6 = 1− 3(1− σ2)s2 + 3(1− σ2)2s4 − 3σ2(1− σ2)s2z2 − 3(1− σ2)σ4s2z4

+3σ2(1− σ2)2s4z2 − 3(1− σ2)3s6 + σ6z6.
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By extending the above process, we can obtain the following explicit general
expressions describing equatorially symmetric inertial waves, for all subclasses
N = 1, 2, 3, . . . :

Uz = i

N∑
i=1

N−i∑
j=0

CijmNσ
2i−1
Nmn(1− σ2

Nmn)
j(2i)sm+2jz2i−1, (4.1a)

Us = −i

N∑
i=0

N−i∑
j=0

CijmNσ
2i
Nmn(1− σ2

Nmn)
j−1(m+ mσNmn + 2jσNmn)s

m+2j−1z2i, (4.1b)

Uφ =

N∑
i=0

N−i∑
j=0

CijmNσ
2i
Nmn(1− σ2

Nmn)
j−1(m+ mσNmn + 2j)sm+2j−1z2i, (4.1c)

where CijmN is defined as

CijmN =
(−1)i+j[2(m+N + i+ j)− 1]!!

2j+1(2i− 1)!!(N − i− j)!i!j!(m+ j)!
.

It can be readily shown that (4.1) satisfies (2.7a) since substitution of (4.1) into
equation (2.7a) yields

s
∂Us

∂z
+ iσNmns

∂Uφ

∂z
+ mσNmnUz ∼

N∑
i=1

N−i∑
j=0

CijmNσ
2i
Nmn(1− σ2

Nmn)
j(2i)sm+2jz2i−1

×[m+ (mσ2
Nmn − m)(1− σ2

Nmn)
−1] ≡ 0. (4.2)

In a similar way equation (2.7b) can be validated. For the equation of continuity,
insertion of (4.1) into equation (2.7c) gives rise to

∂(sUs)

∂s
+ imUφ + s

∂Uz

∂z
∼

N−1∑
i=0

N−i−1∑
j=0

σ2i+1
Nmn(1− σ2

Nmn)
j

[
2(j + 1)(m+ j + 1)Ci(j+1)mN − (i+ 1)(2i+ 1)C(i+1)jmN

]
sm+2j z2i ≡ 0, (4.3)

because

2(j + 1)(m+ j + 1)Ci(j+1)mN = (i+ 1)(2i+ 1)C(i+1)jmN

=
(−1)i+j+1[2(m+N + i+ j) + 1]!!

2j+1(2i− 1)!!(N − i− j)!i!j!(m+ j)!
.

The boundary condition (2.8) is also satisfied since

zUz+(1−z2)1/2 Us ∼WNm(σNmn)

[
N∑
j=0

(−1)j
[2(2N + m− j)]!

j!(2N + m− j)!(2N − j)!z
2N−2j

]
, (4.4)

which is zero provided that σNmn is an eigenvalue given by equation (2.15). An
intriguing feature is, however, that dissipation integrals like (3.5) vanish independently
of the precise value of σNmn, whether σNmn satisfies (2.15) or not.

It is found that there exists a special class of the geostrophic inertial wave, i.e.
where the wave motions are nearly independent of the axis of rotation, which is
characterized by a small frequency. Since the inertial effect in equation (2.3a) is of
secondary importance in the case of a slowly oscillatory wave, the fluid motions have
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m = 1 m = 8

N (ωG)exact (ωG)approx (ωG)exact (ωG)approx

1 −0.17661 −0.17661 −0.25653 −0.25653
2 −0.06819 −0.06796 −0.14502 −0.14087
3 −0.03615 −0.03606 −0.09681 −0.09390
4 −0.02239 −0.02235 −0.07023 −0.06833
5 −0.01523 −0.01521 −0.05366 −0.05240
2 −0.01103 −0.01102 −0.04251 −0.04164
7 −0.00836 −0.00835 −0.03459 −0.03398
8 −0.00655 −0.00655 −0.02874 −0.02830

10 −0.00433 −0.00433 −0.02081 −0.02056

Table 1. Comparison between the frequencies given by (4.5) ((ωG)approx) and the corresponding
frequencies obtained from equation (2.15) ((ωG)exact) for the nearly geostrophic waves.

to be nearly geostrophic. When the frequency of a geostrophic wave is sufficiently
small,

σG = σNmn � O

[
m

N(m+N)

]
,

where m > 0, it can be readily shown that frequency ωG for the geostrophic wave is
given approximately by

ωG = 2σG = − 2

m+ 2

[√
1 +

m(m+ 2)

N(2N + 2m+ 1)
− 1

]
. (4.5)

It follows that these nearly geostrophic inertial waves always travel slowly in the east-
ward direction. Table 1 gives several examples for the frequencies of the geostrophic
waves which are calculated using (2.15) and (4.5). It is interesting to note that the
approximate σG is exactly the same as that given by (2.15) when N = 1.

The explicit general expressions for all equatorially antisymmetric inertial waves
are given by

Uz = i

N∑
i=0

N−i∑
j=0

CijmNσ
2i−1
Nmn(1− σ2

Nmn)
j(2i+ 1)sm+2jz2i, (4.6a)

Us = −i

N∑
i=0

N−i∑
j=0

CijmNσ
2i
Nmn(1− σ2

Nmn)
j−1(m+ mσNmn + 2jσNmn)s

m+2j−1z2i+1, (4.6b)

Uφ =

N∑
i=0

N−i∑
j=0

CijmNσ
2i
Nmn(1− σ2

Nmn)
j−1(m+ mσNmn + 2j)sm+2j−1z2i+1, (4.6c)

where CijmN is defined by

CijmN =
(−1)i+j[2(m+N + i+ j) + 1]!!

2j+1(2i+ 1)!!(N − i− j)!i!j!(m+ j)!
.

Expressions (4.6) are valid for N = 0, 1, 2, 3 . . . and possess the symmetry property
(2.9b). Evidently, there are no nearly geostrophic modes for this particular symmetry
because the parity does not permit it.
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5. The vanishing of the general dissipation integral
After the explicit general expressions (4.1) and (4.6) for the complete set of inertial

waves had been obtained, a great effort was made to show that the dissipation integral
vanishes for all inertial waves. Here only the analysis for equatorially symmetric waves
(4.1) will be demonstrated. While the relevant integrations over the sphere are not
difficult, the resulting expressions involve rather complex sums with four different
indexes:

〈u∗Nmn · ∇2uNmn〉 ∼
[
4(1 + σ2

Nmn)S1N + 8mσNmnS2N +
S3N

4σ2
Nmn

]
, (5.1)

where

S1N ∼
N∑
i=0

N∑
k=1

N−i∑
j=0

N−k∑
l=0

(−1)i+j+k+lσ2(i+k)
Nmn (1− σ2

Nmn)
j+l

× [m2 + (m+ 2j)(m+ 2l)][2(m+N + i+ j)− 1]!!

[2(l + k + i+ j + m)− 1]!!

× [2(m+N + k + l)− 1]!!

(2i− 1)!!(N − i− j)!i!j!(m+ j)!(k − 1)!l!

(2i+ 2k − 3)!!(l + j + m− 1)!

(2k − 3)!!(l + m)!(N − k − l)! ,

(5.2a)

S2N ∼
N∑
i=0

N∑
k=1

N−i∑
j=0

N−k∑
l=0

(−1)i+j+k+lσ2(i+k)
Nmn (1− σ2

Nmn)
j+l

× [2(m+N + i+ j)− 1]!!

[2(l + k + i+ j + m)− 1]!!

× [2(m+N + k + l)− 1]!!

(2i− 1)!!(N − i− j)!i!j!(m+ j)!(k − 1)!l!

(2i+ 2k − 3)!!(l + j + m)!

(2k − 3)!!(l + m)!(N − k − l)! ,

(5.2b)

S3N ∼
N∑
i=1

N∑
k=2

N−i∑
j=0

N−k∑
l=0

(−1)i+j+k+lσ2(i+k)
Nmn (1− σ2

Nmn)
j+l

× [2(m+N + i+ j)− 1]!!

[2(l + k + i+ j + m)− 1]!!

× [2(m+N + k + l)− 1]!!

(2i− 1)!!(N − i− j)!(i− 1)!j!(m+ j)!(k − 2)!l!

(2i+ 2k − 5)!!(l + j + m)!

(2k − 3)!!(l + m)!(N − k − l)! ,

(5.2c)

where N > 1. We find that

S1N = S2N = S3N ≡ 0,

for any m, n, σNmn and N, and hence that

〈u∗Nmn · ∇2uNmn〉 = 0 (5.3)

holds for all the inertial waves in a rotating fluid sphere.
It is evident that the indices, i, j, k, l in equations (5.2a–c) are intimately entangled,
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which makes it difficult to reduce their number by carrying out the summation over
individual indices. Though there may be even simpler ways to prove equation (5.3),
here we present a way that seems to be the most straightforward one. As an example
we derive the proof for S2N ≡ 0. The method and idea for proving S1N ≡ 0 and
S3N ≡ 0 are almost identical.

The major task is to disentangle the indices in the summations. An effective way is
to introduce two additional indices, say α and β, by considering a new sum with six
indices:

SM2N =

M∑
α=0

M−α∑
β=0

ZM
α,β

N−M∑
i=0

N−M∑
k=1

N−i−M∑
j=0

N−k−M∑
l=0

(−1)i+j+k+lσ2(i+k+2α)
Nmn (1− σ2

Nmn)
j+l+2β

× [2(m+N + i+ j + α+ β)− 1]!![2(m+N + k + l + α+ β)− 1]!!(l + j + m+ β)!

i![2(i+ α)− 1]!!j!(m+ j + β)!(N − i− j −M)!(k − 1)!

× [2(i+ k + α)− 3]!!

[2(k + α)− 3)]!!l!(l + m+ β)!(N − k − l −M)![2(γ + α+ β +M)− 1]!!
, (5.4)

where γ = (l + k + i+ j + m) and the coefficients Zi,j are defined as

Z 0
0,0 = 1, ZM+1

i,0 = (−1)M+1−i (M + 1)!

(M + 1− i)!i!2M+1, (5.5a, b)

ZM+1
0,i = (−2)M+1−i (M + 1)!

(M + 1− i)!i! , ZM+1
i,M+1−i = 2i

(M + 1)!

(M + 1− i)!i! , (5.5c, d)

and

ZM+1
i,j = −2ZM

i,j + 2ZM
i−1,j + ZM

i,j−1, 1 6 i 6 (M − 1), 1 6 j 6 (M − i). (5.5e)

In fact the precise values of the coefficients ZM
i,j are not important because they are

not required in our analysis. Clearly we have

S2N = S0
2N. (5.6)

At a first glance, the sum (5.4) involving the six entangled indices is much more
complex than (5.2b). The idea is to find a recurrence relation between S

j
2N and S

j+1
2N

instead of direct evaluation of (5.4). The hope is that the twisted indices can be
decoupled and the relevant summations can readily be carried out once the new
index M is sufficiently large. As shown in Appendix C, such a recurrence relation
does exist and the decoupling of the indices does indeed happen when M = N−1. At
M = N − 1 the tangled indices can be decoupled and the expression (5.4) can readily
be worked out explicitly:

SN−1
2N = −

N−1∑
α=0

N−1−α∑
β

ZN−1
α,β

[2(m+N + α+ β) + 1]!!

(2α− 1)!!(m+ β)!

×
[

1∑
i=0

1−i∑
j=0

(−1)i+jσ2(i+2α+1)
Nmn (1− σ2

Nmn)
j+2β

i!j!(1− i− j)!
]

(5.7)

which is identically zero because

1∑
i=0

1−i∑
j=0

(−1)i+jσ2i
Nmn(1− σ2

Nmn)
j

i!j!(1− i− j)! ≡ 0. (5.8)
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This implies, by the recurrence relation, that S2N ≡ 0. In a similar way we can show
that S1N = 0 and S3N = 0.

It is of importance to note that the internal dissipation integral vanishes for all
inertial waves regardless of the spatial scale of a wave. When an inertial wave has a
large spatial scale with the wavenumber O(1), the viscous dissipation in the Ekman
boundary layer with non-slip boundary condition is O(E1/2) with E � 1, which is
much larger than the possible internal dissipation O(E). In this case, we may neglect
the internal dissipation, at leading order anyway, either in a sphere or a plane layer,
and the property (5.3) is not physically important. When an inertial wave has a
small spatial scale, say, with a large wavenumber O(E−1/3), the internal dissipation
O(E1/3) for a plane layer would be much larger than the viscous dissipation in the
Ekman boundary layer. However, the internal dissipation with m = O(E−1/3) for a
rotating sphere is still identically zero. In this case, the property (5.3) is also physically
important. It follows that the inertial wave in a rotating sphere is always controlled
by the Ekman boundary layer, which may be weak such as in the case of stress-free
boundary conditions.

6. Concluding remarks
The vanishing of the dissipation integral (1.1) for all inertial oscillations of a rotating

sphere may suggest that it is caused by a simple relationship. We have been unable
to find such a simple reason and we thus had to revert to the analysis in § 5 in order
to provide a proof of the property. The fact that the dissipation integral of inertial
waves is finite in all other geometric configurations that have been studied indicates
that the vanishing of the dissipation integral is associated with the unique geometric
properties of the sphere. For a general three-dimensional flow, u = (ur, uθ, uφ), in a
sphere, the dissipation integral (1.1) can be written as∫

V

u · ∇2u dV = −
∫
V

|∇× u|2 dV + 2

∫
S

(u2
θ + u2

φ) dS

+

∫
S

[
uθ
∂(uθ/r)

∂r
+ uφ

∂(uφ/r)

∂r

]
dS, (6.1)

where S represents the surface of the sphere and the two surface integrals are
associated with the boundary condition of the flow. If u satisfies a non-slip boundary
condition, the two surface integrals in (6.1) vanish; if u satisfies a stress-free boundary
condition, the second surface integral in (6.1) is then zero. However, the inertial wave
solution given by (4.1) or (4.6) does not satisfy either the rigid or stress-free boundary
condition.

An interesting question is whether the internal dissipation integral vanishes in
a rotating spherical shell with a small inner sphere or in a rotating spheroid. A
great effort has been made by us to study analytically the same problem in a rotating
spherical shell. So far we have been unable to find exact solutions that satisfy equations
(2.7a–c) as well as the boundary condition at both the inner and outer surfaces of the
shell. Numerical solutions for inertial waves in a rotating spherical shell (for example,
Hollerbach & Kerswell 1995; Rieutord & Valdettaro 1997) indicated that the solution
of an inertial wave in a rotating spherical shell may be quite different from that in a
sphere, at least for some modes. But it is not clear how and why the effect of a small
inner sphere can change an inertial wave such as that shown in figure 1. Our study
of the problem of inertial waves in a spheroid is currently underway. The preliminary
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results in connection with some simple solutions indicate that the dissipation integral
does not vanish in general for a spheroid.

The explicit general solution for the inertial waves in a rotating sphere is likely to
be the most useful result of this paper. The availability of explicit expressions opens
new possibilities for studying problems of fluid dynamics such as thermal convection
in rotating spherical systems or motion in the presence of an azimuthal magnetic
field as assumed by Malkus (1967). The explicit solution (4.1) may be used as a basis
to express an arbitrary velocity distribution in a sphere. In comparison to spherical
harmonics the inertial wave eigenfunctions are more natural in some situations and
there are numerical advantages in using them. The relevant research is now underway.

An important finding, which may be significant for the dynamics of the Earth’s core,
is the three-dimensional, nearly geostrophic slow waves. When N in equation (4.5) is
sufficiently large, they represent slowly travelling, nearly two-dimensional columnar
Rossby-type waves. These columnar Rossby waves resemble the columnar convection
modes found by Busse (1970) (see also Roberts 1968) and in fact the relationship
between Rossby waves and columnar convection becomes an exact correspondence
in the limit of small Prandtl number in the case of the rotating cylindrical annulus
(Busse 1986). In the case of the sphere slow inertial waves lack the phase shift in
the azimuthal direction and thus cannot be directly related to the strongly spiralling
columnar convection (Zhang 1992). On the other hand, a perfect correspondence
between convection and inertial oscillations has already been pointed out by Zhang
(1994, 1995) for equatorially attached convection at low Prandtl numbers.

K. Z. and X. L. have been partially supported by a NERC and a NSFC grant
(19928307) and P. E. has been supported by an EPSRC studentship.

Appendix A
Consider the problem of inertial waves in a cylindrical annulus of height H with

the inner and outer radii at si and so, which rotates about the symmetry axis with a
uniform angular velocity Ω. It is convenient to use the height H as a characteristic
length and Ω−1 as a characteristic scale of time. The inertial wave with the frequency
ω = 2σ is bounded |σ| < 1 (Greenspan 1968). It can be readily shown that σ is given
by the solution of the equation[
soKm−1(ξo) +

m(1− σ)1/2

nπ(1 + σ)1/2
Km(ξo)

] [
siJm−1(ξi) +

m(1− σ)1/2

nπ(1 + σ)1/2
Jm(ξi)

]
−
[
soJm−1(ξo) +

m(1− σ)1/2

nπ(1 + σ)1/2
Jm(ξo)

] [
siKm−1(ξi) +

m(1− σ)1/2

nπ(1 + σ)1/2
Km(ξi)

]
= 0,

(A 1)

where

ξi =
nπ

σ
(1− σ2)1/2si, ξo =

nπ

σ
(1− σ2)1/2so, (A 2)

and Jm and Km are the Bessel function of the first and second kind, m denotes the
azimuthal wavenumber and n represents the number of zeros of the wave motions
along the axis of rotation. The velocity of the inertial waves can be explicitly written
as

uz = −i
(1− σ2)nπ

σ
fmn(s) sin(nπz) ei(mφ+2σt), (A 3a)
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us = −i

[
σ

dfmn
ds

+
mfmn

s

]
cos(nπz) ei(mφ+2σt), (A 3b)

uφ =

[
dfmn
ds

+
mσfmn

s

]
cos(nπz) ei(mφ+2σt), (A 3c)

where i =
√−1, u = (us, uφ, uz) represents the velocity field in cylindrical coordinates

(s, φ, z) and

fmn(s) = [m(1− σ)1/2 Km(ξo) + nπso(1 + σ)1/2 Km−1(ξo)]Jm(ξ)

−[m(1− σ)1/2 Jm(ξo) + nπso(1 + σ)1/2 Jm−1(ξo)]Km(ξ) (A 4)

with

ξ =
nπ

σ
(1− σ2)1/2s.

For any σ obtained from (A1), we can use (A3) to find the dissipation integral

〈u∗∇2u〉 ∼ −
∫ so

si

[
(nπ(1− σ)fmn)

2

σ2
+

(
σ

dfmn
ds

+
mfmn

s

)2

+

(
dfmn
ds

+
mσfmn

s

)2
]
s ds, (A 5)

which is always non-zero and negative. If a no-slip boundary is assumed, the dissipa-
tion within the Ekman boundary layers would dominate; if the boundary condition
is assumed to be stress-free, there will be no Ekman boundary layers on the ends of
the annulus and the viscous dissipation in the weak Ekman layers at the walls and in
the interior of the fluid would be equally important. In a similar way we can show a
non-zero and negative dissipation integral for a rotating plane layer, cylinder and box.

Appendix B
In equation (3.2) coefficients Cj, j = 1, . . . , 6, are a function of σ and m and are

given by

C1 =
4σ4

9
(2m+ 5)(2m+ 7)(m+ 1)(m+ 2), C2 =

(1− σ2)2

3
(2m+ 5)(2m+ 7),

C3 = −8σ2

3
(2m+ 5)(m+ 1)(m+ 2), C4 = −4(1− σ2)

3
(2m+ 5)(m+ 2),

C5 =
4σ2(1− σ2)

3
(2m+ 5)(2m+ 7)(m+ 2), C6 =

4

3
(m+ 1)(m+ 2).

The coefficients in equation (3.3) are

Cz
1 =

2σ4

3
(2m+ 5)(2m+ 7), Cz

2 = −2σ2(2m+ 5), Cz
3 =

σ2(1− σ2)(2m+ 5)(2m+ 7)

(m+ 1)
,

Cs
1 = C

φ
1 =

2mσ4

3
(1 + σ)(2m+ 5)(2m+ 7), Cs

3 = C
φ
3 = −4mσ2(1 + σ)(2m+ 5),

Cs
2 =

(1− σ2)2 (2m+ 5)(2m+ 7)(mσ + 4σ + m)

2(m+ 1)(m+ 2)
,
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C
φ
2 =

(1− σ2)2 (2m+ 5)(2m+ 7)(mσ + 4 + m)

2(m+ 1)(m+ 2)
,

Cs
4 = −2(1− σ2)(2m+ 5)(mσ + 2σ + m)

(m+ 1)
, C

φ
4 = −2(1− σ2)(2m+ 5)(mσ + 2 + m)

(m+ 1)
,

Cs
5 =

2σ2(1− σ2)(2m+ 5)(2m+ 7)(mσ + 2σ + m)

(m+ 1)
,

C
φ
5 =

2σ2(1− σ2)(2m+ 5)(2m+ 7)(mσ + 2 + m)

(m+ 1)
,

Cs
6 = C

φ
6 = 2m(1 + σ).

For any wavenumber m, there are four different waves with the half-frequency σ given
by

σ1 =
1

m+ 4
− 1

2
(
√
β1 +

√
β2 +

√
β3), σ2 =

1

m+ 4
− 1

2
(
√
β1 −

√
β2 −

√
β3),

(B 1a, b)

σ3 =
1

m+ 4
+ 1

2
(
√
β1 −

√
β2 +

√
β3), σ4 =

1

m+ 4
+ 1

2
(
√
β1 +

√
β2 −

√
β3),

(B 1c, d)

where

βj =
4(m+ 3)(m+ 5)

(2m+ 7)(m+ 4)2
− 8

2m+ 7

(
(m+ 2)(m+ 5)

(2m+ 5)(m+ 4)

)1/2

× cos

[
1

3
cos−1

{
−1

2

(
(m+ 5)(2m+ 5)

(m+ 2)(m+ 4)

)1/2
}

+
2(j − 1)π

3

]
, j = 1, 2, 3. (B 2)

Appendix C
To obtain a recurrence relation, we first notice that (5.4) can be decomposed into

the following four different summations:

SM2N = Λ1 + Λ2 + Λ3 + Λ4,

where

Λ1 =

M∑
α=0

M−α∑
β=0

ZM
α,β

N−M−1∑
i=0

N−M−1∑
k=1

N−i−M−1∑
j=0

N−k−M−1∑
l=0

(−1)i+j+k+l σ2(i+k+2α+2)
Nmn (1− σ2

Nmn)
j+l+2β

×2[2(m+N + i+ j + α+ β) + 1]!![2(m+N + k+ l+ α+ β) + 1]!!(l+ j +m+ β)!

i![2(i+ α) + 1)!!j!(m+ j + β)!(N − i− j −M − 1)!(k − 1)!

× [2(i+ k + α)− 1]!!

[2(k + α)− 1)]!!l!(l + m+ β)!(N − k − l −M − 1)![2(γ + α+ β +M) + 3]!!
,

(C 1a)
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Λ2 = −
M∑
α=0

M−α∑
β=0

ZM
α,β

N−M−1∑
i=0

N−M−1∑
k=1

N−i−M−1∑
j=0

N−k−M−1∑
l=0

(−1)i+j+k+l σ2(i+k+2α+1)
Nmn (1− σ2

Nmn)
j+l+2β+1

× [2(m+N+i+j+α+ β)+1]!![2(m+N+k+l+α+ β)+1]!!(l+j+m+β+1)!

i![2(i+ α)− 1)!!j!(m+ j + β + 1)!(N − i− j −M − 1)!(k − 1)!

× [2(i+ k + α)− 3]!!

[2(k+α)−3)]!!l!(l+m+β+1)!(N−k−l−M−1)![2(γ+α+β+M)+3]!!
,

(C 1b)

Λ3 = −
M∑
α=0

M−α∑
β=0

ZM
α,β

N−M−1∑
i=0

N−M−1∑
k=1

N−i−M−1∑
j=0

N−k−M−1∑
l=0

(−1)i+j+k+l σ2(i+k+2α)
Nmn (1− σ2

Nmn)
j+l+2β

×2[2(m+N+i+j+α+β)−1]!![2(m+N+k+l+α+β)−1]!!(l+j+m+β)!

i![2(i+ α)− 1)!!j!(m+ j + β)!(N − i− j −M − 1)!(k − 1)!

× [2(i+ k + α)− 3]!!

[2(k + α)− 3)]!!l!(l + m+ β)!(N − k − l −M − 1)![2(γ + α+ β +M) + 1]!!
,

(C 1c)

Λ4 =

M∑
α=0

M−α∑
β=0

ZM
α,β

N−M−1∑
i=0

N−M−1∑
k=1

N−i−M−1∑
j=0

N−k−M−1∑
l=0

(−1)i+j+k+l σ2(i+k+2α)
Nmn (1− σ2

Nmn)
j+l+2β+1

× [2(m+N+i+j+α+β)+1]!![2(m+N+k+l+α+β)+1]!!(l+j+m+β+1)!

i![2(i+α)−1)!!j!(m+j+β+1)!(N−i−j−M−1)!(k−1)!

× [2(i+k+α)−3]!!

[2(k+α)−3)]!!l!(l+m+β+1)!(N−k−l−M−1)![2(γ+α+β+M)+3]!!
.

(C 1d)

Secondly, we notice that, by shifting α in Λ1 by 1, and by combining Λ2 and Λ4 and
then shifting β by 1, we find the following relationship between SM2N and SM+1

2N :

SM2N =

(M+1)∑
α=0

(M+1)−α∑
β=0

Z
(M+1)
α,β

N−(M+1)∑
i=0

N−(M+1)∑
k=1

N−i−(M+1)∑
j=0

N−k−(M+1)∑
l=0

(−1)i+j+k+l σ2(i+k+2α)
Nmn (1− σ2

Nmn)
j+l+2β

× [2(m+N+i+j+α+β)−1]!![2(m+N+k+l+α+β)−1]!!(l+j+m+β)!

i![2(i+α)−1)!!j!(m+j+β)![N−i−j−(M+1)]!(k−1)!

× [2(i+ k + α)− 3]!!

[2(k+α)−3)]!!l!(l+m+β+1)![N−k−l−(M+1)]![2(γ+α+β+(M+1))−1]!!
.

(C 2)
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In other words, we have shown that there is a general recurrence relation for N > 2,

SM2N =
SM+1

2N

N −M, (C 3)

which gives rise to

S2N = S0
2N =

S1
2N

N
=

S2
2N

N(N − 1)
= · · · = SN−1

2N

N!
. (C 4)
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